May 7 2019      20min read     

death, infinity, and the story we tell ourselves

by Archy Will He

As much as we tend not to take great delight in acknowledging the fact that physically we are meats wrapped around skeletons on our path to decomposition (and, in some cases, cremation) and amuse ourselves by visualising what that will be like, we are not physiologically wired to appreciate the transient nature of life. It takes great efforts for our reptilian mind to accept and embrace mortality without distantiating the realistic notion of death with imaginary abstractions. As a product of natural evolution akin to all other life forms on Earth, we operate on wetware fine-tuned for survive-and-reproduce. Intelligence is a by-product. And so are our appreciation for arts and our craving for meaning and purposes and cat videos.

Life is short, as Paul Graham would tell you[1]. We have a finite window of time in which we get to interact with this world, and with all these people whose windows of time overlap with ours. And then we are gone. Unless you believe in an afterlife there will presumedly be nothing afterwards. It will be truly a transition into infinity in the sense of an eternal void. Nothing. No muse befriends; no invention, no hope; no notion of time; no notion of the future; no notion of the past. A static equilibrium due to the absence of brain activities. Brain dead. Consciousness ceases.

It is as much as an escape from this world into nothingness as it is the surreal ending that promises nothing for eternity. This by definition renders life intrinsically meaningless in that the end goal of life is none-existent. As humans we often have troubles with this notion of death in one way or another. Perhaps we are too used to continuation. Perhaps we are too used to having goals. Perhaps we are too used to meanings and abstractions. The absence of an afterlife i.e. a complete and non-negotiable termination can feel very unsettling even when we try our best ability to accept it. After all, we are obsessed with infinity. And when you mix the concept of infinity with nothingness, it has this unpleasant connotation to it (though in rare cases it can be felt like an enormous relief, such as at times when the notion of nothingness is highly appreciated e.g. during the experience of prolonged intense physical agony). Either way, the mystery of death is unnerving as much as it is fascinating because it is the actualisation of infinity and nothingness. A termination that continues forever. In this sense, the concept of an afterlife or rebirth is at the expense of the denial of an infinite void but not infinity itself. We are indeed really obsessed with infinity.

The same way that functional programmers know the value of everything but the cost of nothing[2], our obsession (or meta-obsession) with infinity is the by-product of the very nature of conceptualisation which tends to detach us from physical reality and the cost structure of things in that the concept of a cat encapsulates infinitely many cats but really there can only exist a finite number of cats in this universe, let alone encountered in one’s self-contained existence of finite time (and with a finite amount of efforts and resources; encountering cats is hard work). Indeed, a brief look into the history of mathematical formalisation starting in the 1900s (e.g. Cantor’s work) would give us a sense of how fragile the intuition-based approach to infinity can turn out for machines that turn coffee into theorems. The first time we truly have a glimpse into the flaws unto the concept of infinity is in Gödel’s work (i.e. his proof of the incompleteness theorems), which is really more about the limitation of infinity (as observed in a formal language with the capability to construct infinitely many clauses which as Gödel demonstrated undermines the completeness of its modelling of a none-inconsistent system of infinitely many things) than many believed to be the limitation of formalisation, considering that any useful formalisation of systems in every day life (or to this world) are designed and constructed to be constrained in a finite manner to ever run into anything remotely resembling the incompleteness depicted in the theorems (in the same way that the halting problem doesn’t stop compiler to check for infinite loops in programs), and any valuable formalisation of mathematical concepts and amusement with regard to infinity or any infinite system (such as the incompleteness proof itself) can always be appreciated in a finite amount of time requiring a finite amount of mental resources, or they will not be wholeheartedly appreciated.

That leaves the abc conjecture somewhat still an open question even assuming no errors in Shinichi Mochizuki’s theory[5] presuming the structural complexity and mind-numbingly elegance of his work will take most of us more than a finite amount of time to appreciate the same way that some classes of Turing machines simply don’t halt on a certain input string.

Indeed. Infinity has always been a human construct. As we study and learn about the physical realm we grow a little bit more appreciation for the impossibilism in the physical actualisation of infinity. There can exist not infinitely many things for the number of atoms in this universe at any moment in time is finite. We can’t go infinitesimally small the way Zeno’s paradoxes play out because we are confined within the Planck constant. In this world no transfer of information of any possible mean is able to exceed 299792458m/s. In this case, looking into the instantaneous collapse of entangled (and somewhat correlated) particle superimposition at a distance under measurement should perhaps be interpreted as poking into a very fundamental property (type-theoretical and perhaps in many way functional and statelessness-related) about this world than the studying of a correlation which in the physics context often implies an interaction in some way (or a spooky action at a distant as Einstein would put it). Either way the physical reality is itself finitely bounded. But this finiteness is derived from the scrutinisation of reality under a framework developed from the notion of quantifying measurements and each measurement corresponds nicely to a finite numerical value which under any sensible operations will only give rise to more finite numerical values, and in this way the reality we talk about is physical, and in this way the results from studying the physical reality is useful in terms of the applications to construct/maintain physical systems, especially as technology advances and higher precision in measurements can be obtained with a lower cost[3], and tremendously more pragmatic as compared to the once popular disciplines of alchemy which emphasise a great deal on the quality notions in things in this world, that which can’t be measured but felt (i.e. qualitification v.s. quantification in physics and other sciences).

This pragmatism deserts the notion of infinity and anything infinity-related can never be experimentally verified by the own axiomatisation of the scientific methods. There is a nice correspondence in real life too in that anything pragmatic is ultimately considered within the framework of finite resource allocation and the more finite (or limited) we consider of the pool of resources the less work we would expect to be done (e.g. less things in the sprint backlog for the first week please) and the closer we get to how things will actually end up, realistically, and the better the project management becomes, while anything spiralling unto romanticism or approaching infinity in one way or another is often none-accomplishable and will (though not always the case) lead to unfavorable consequences e.g. falling deeply in love with someone and end up broken-hearted because reality is a lot harsher than your idealism the same way that physical systems are coarse under high resolution while our mental abstractions often encode approximations of them akin to viewing a regular polygon with efficiently large number of vertices as a circle (since a circle is pretty much a regular polygon as the limit of the number of its vertices approaches infinity). In this sense, conceptually (or meta-conceptually) we tend to perform infinity-based operations with the characteristic of lossy compression but instead of giving rise to more entropies we end up with a more rounded generalisation/categorisation which captures what we deemed as the essence but in low resolution i.e. a simpler but more encapsulating representation of the real objects or the concepts, etc (as we scale up the abstraction layers), attesting to the limitation in the brain’s physical ability to encode a significantly large amount of details and to the structural wondrousness and elegance that arose from this very limitation/finiteness that entails infinities.

And it is precisely things with very infinite-ish attributes or connotations that we value the most in life. And these are often the things from which meanings and purposes can be derived and felt e.g. spiritual experiences, mystical states of consciousness, human connections in a deep and profound level, religions, the notion of leaving a legacy or making the world a better place, the profoundness of the cosmos, synchronicity, the beauties in mathematics, the somewhat transcendentalistic act of proving the abc conjecture, believing in The Book[4], etc. We are indeed truly obsessed with infinity. Infinity makes us feel great. Or perhaps feeling great is infinity. When you feel really great and you feel like you have seldom been this level of great before, this level of great is perceptively infinite in the same way that when you have a number line marked with 0 and 1 at both ends and you will ever only go into values from this line and there is no way to instantaneously jump from one value to another once a value has been selected (as constrained by continuity), 1 takes the place of infinity. Conceptually you can go into 0 or 1. But practically you can’t. And perceptively you do from times to times i.e. the furthest point you have gone and of which you know not of going beyond will feel like it is the furthest point (i.e. 1), especially in a system environment where significance of existed things decay as memories get corrupted and dilute themselves through the passage of time. This is why practising mindfulness is great. In every deep and profound appreciation of the present presents itself the feeling of getting closer to 0 or/and 1.

After all, this immediate conscious experience is somewhat akin to a recursive function call, perhaps in continuation-passing style. We are all voids stuck in an infinite loop of continuations corresponding to (for the lack of a better word) the state of a machine that is physically finite which constitutes the notion of a self in our own little made-believed world, reflecting the stories we tell ourselves as we encountered and remembered things that happened in the past from which reality and this mathematically consistent world we are in can be inferred. But the past doesn’t exist the same way that perfect circles don’t. Neither nor is reality or this mathematically consistent world inferred. We don’t quite exist either. All there is is this recursive function call that never ends. And the void because it is stateless.

Or perhaps there are a lot more to existence than the mysterious infinite function call and the lovely elegant void. Ultimately it all depends on how we consciously perceive (or meta-perceive) existence. It all depends on the stories we tell ourselves. Or not we but the function calls for the ultimate deconstruction of a self returns void because it is stateless and pure. And the Turing-completeness of reality has set itself into motion long before dawn. The future is as immutable as immutability is.

Everything else is prologue.

[1] Life is Short (

[2] Alan Perlis (

[3] The Difference Engine by Doron Swade (

[4] Paul Erdős: “You don’t have to believe in God, but you should believe in The Book.” (

[5] Inter-universal Teichmuller Theory I: Construction of Hodge Theaters (

Inter-universal Teichmuller Theory II: Hodge–Arakelov-theoretic Evaluation (

Inter-universal Teichmuller Theory III: Canonical Splittings of the Log-theta-lattice (

Inter-universal Teichmuller Theory IV: Log-volume Computations and Set-theoretic Foundations (

#abcconfirmed (

Archy Will He: Hey there! Thanks for reading! Hit me up at if you enjoy this piece and/or would like to give me some suggesitons on stuff, etc! Thanks! :)) is handcrafted by Archy

Frontend consists of vanilla JS, CSS & HTML with Bootstrap
Backend written exclusively in Haskell using Hakyll

See you around.